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Coherency strain effects in metallic bilayers 
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$ Naval Research Iabomtory, Wshington, Dc 20375-51XQ USA 
5 Dqadment  d Physics, Ibe Catholic University d America, Mshington, DC ZXW, 
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Rcccived 5 December 1991 

Abs(nd. Sincc iu dismvsry, the socalled Supenncdulus ellcct' has attracted mn- 
sidaable attention, both in vim d pnssible applications and *use of it8 intrinsic 
fundamentll scienti6c i n l u a t  brit apaimental imestigations have, however, cast 
h u b @  on the m y  eristence d lhe eiTect, or at least on i h  magnitude. Fmm a thwretical 
point d new, &yeTBI models have been pmpmed fo aplain the elled. but none is fully 
mnvincing. In the -t paper w investigate the mhUpllq Ymin model. which m 
Mieve may yield the m a t  plausible quantitative aplanation d &e supemcdulus ellst. 
W foUow lhe appmach Lint proposed by lankowski and Wka!akcs, bul, m addition to 
other modifications, we evaluate the tiaxial modulus lor a deformation in the [lll] dire- 
tion, as obswed experimentally, iather lhan the [lOa] direction, as chosen Ly Jankomki 
and ?Salralakm (probably baaw it was easier to determine the biaxial modulus in this 
mher than in the [ l l l ]  dimtion). 

1. Introduction 

Xvocomponent multilayer metal films consist of alternating layers of two differ- 
ent metals deposited on a suitable substrate. These "s are commonly known as 
mmpasition-modulated multilayers, and the bilayer thickness, A, is referred to either 
as the composition-modulated wavelength or as the repeat distance. The development 
of multilayer films, initially produced to study diffusional effem in metal films, led to 
the discovery of the 'supermodulus effect' by Hilliard and co-workers in Au/Ni and 
W d  multilayers [l-31. They observed that in these multilayers, and for a repeat dis- 
tance in the range of 15-20 the measured biaxial modulus was two to three times 
larger than the value predicted by the simple rule of mixture. Following the original 
study on Au/Ni and CuPd films, Baral (another student of Hilliard) investigated the 
changes in the primary elastic properties of Cu/Ni multilayers [4]. Baral showed the 
existence of a supermodulus effect not only in the biaxial modulus but also in other 
moduli, such as the flexural and torsional moduli, for a repeat distance of about 20 
8, Therefore, the supermodulus effect is understood to mean a significant increase 
in the elastic moduli of multilayer systems in general and, specifically, in the biaxial 
modulus. 

Multilayer films represent a new class of materials with novel electronic, mag- 
netic, and mechanical properties. Consequently, the discovery of the supermodulus 
effect has given rise to the hope that, in the future, it would be possible to develop 
multilayered materials with specifically engineered mechanical and physical properties. 

0953-8984/92/153915+14$04.50 0 1592 IOP Publishing Ltd 3915 
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As a consequence of the pioneering work of Hilliard and co-workers, extensive 
investigations have been conducted in order to study possible anomalies in the elastic 
behaviour of multilayer metal films. Since its discovery, different models have been 
pmposed m explain, on an atomic scale, the origin of the supermodulus effect. All the 
pmposed models start with the implicit assumption that the effect must be associated 
with the fact that, for repeat distances of around 20 A (corresponding to a few atomic 
layers), a large volume fraction of the two different metal atoms tie at or near an 
interface. Below, the three prevalent models proposed to explain the supermodulus 
effect are briefly summarized. 

(i) In the first model, as proposed by Ur, [SI and later also by Pickett 16, 7, 
the increase in the biaxial modulus is assumed to be the result of the interaction of 
the Rrmi surface with the Bdlouin mne, arising f" the layered structure of the 
materials. In this model the important parameter is the valence difference between 
the two metal constituents. 

(U) The second model, originally proposed by Grimsditch and co-workers [SI, tries 
to explain the &ect with electronicatructure considerations. According to this model, 
the supermodulus effect is the result of the charge transfer that takes place when two 
metals with different work functions come into intimate contact. 

(iu) The thud model relies on the coherency strains that may be present at the 
multilayer interfaces due to the lattice mismatch of the two component metals. At 
a coherent interface, the component with the larger lattice constant is compressed 
laterally, whereas the component with the smaller lattice constant is expanded. This 
state of affim produces coherence strains at the interface and the multilayer system 
"izes its total energy by adjusting its interlayer spacing perpendicular to the 
interface plane. The main proponents of the coherency strain model are Jankowski 
and Bakalakos (9-111. 

In the last few years the whole issue of the supermodulus effect has been carefully 
re-examined both experimentally and theoretically. 'Ib date, no one has been able 
to duplicate the original results reported by Hilliard and co-workers. These recent 
results cast doubt upon the existence of a supermodulus effect in metallic multilayers 
or its relative magnitude. A brief summary of the recent experimental and theoret- 
ical results relating to the question of the existence and relative magnitude of the 
supermodulus effect is given below. 

Studies by Ketterson and co-workers on the mechanical properties of Cu/Ni mul- 
tilayers did not show any enhancement in either the biaxial or the Young's modulus of 
self-supporting film specimens [12]. Their mechanical test results were consistent with 
Rayleigh acoustic wave measurements on the same films. These were conducted by 
Mattson and co-workers who did not observe any anomaly in the Rayleigh wave veloc- 
ity 1131. On the other hand, Rlco and co-workers, who also used Brillouin scattering 
to study the elastic properties of MO/%, Cu/Nb, and Cu/Co and Agmd multilayers, 
observed that the values of some elastic constants (such as C,,, C,,, C,, and CS5) 
depend on the repeat distance A. Changes of up to 20% in the Rayleigh acoustic 
wave velocity were observed in Agmd multilayers as the repeat distance was varied 
between 5 and 100 8, [14]. Cammarata and co-workers, who measured the elastic 
properties of Cu/Ni multilayers by a nano-indentation technique, did not observe the 
elastic property anomalies which are characteristic of the supermodulus effect [15]. 
Fiially, atomistic model studies by Gilmore and Provenzano [16], by Chen et al [lq, 
and by Jaszczak el al I181 on CuPd and C W i  multilayers showed increases of from 
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%35% in some of the elastic moduli. 
’Ib reiterate, the results of the above experimental and theoretical studies lead one 

to conclude that, if the supermodulus effect really exists, its magnitude is significantly 
smaller than originally reported by Hilfinrd and co-workers, with a 40% increase 
above the value predicted by the rule of mixture representing the upper limit of the 
effect. 

Among the three aforementioned models for the explanation of the supermodulus 
effect, the mherency strain approach appears to be the most plausible. In fact, it 
is the only one that iS consistent with the observations reported by Gleiter 1191 in 
mnnection with his fundamental studies on the properties of materials with nanosize 
grain dimensions. Gleiter observed a significant modulus enhancement in nanocrys- 
talline pure metals, such as Cu and Pd, but not in ionic materials with nanocrystalline 
grain size. Other difficulties with the first two models are discussed in references [20, 

Besides being more promising. the coherency strain model is particularly appealing 
for its intrinsic simplicity, since it connects, via a pseudopotential energy approach, the 
elastic properties to the local atomic structure. Jankowski and Bakalakos’ calculations 
[9-111, however, were performed in the [lo01 direction, in order to simplify the 
analysis. Since most measurements have been performed on metal film samples grown 
with the interface parallel to the [ I l l ]  direction, it has been diRcult to make a direct 
comparison between the theoretical results obtained by Jankowski and Thkalakos 
and experimental results (Hilliard and co-workers [l-31). Furthermore, as will be 
shown in the next section, their calculations contain an element of inaccuracy which, 
although relatively small, we believe should be corrected. 

The purpose of the present paper is to establish the formalism for the calculations 
of the elastic constants (and therefore of the biaxial modulus and other elastic moduli) 
for a single metallic layer strained in an arbitrary direction. Following assumptions 
of Jankowski and Bakalakos concerning the total energy of multilayer systems, as 
detailed in the next section, we then apply our formalism to predict the amount of 
’supermodulus effect’ (variation of the biaxial modulus) which can be expected for 
a given strain of the same metallic layer in the [lll] direction. In a subsequent 
paper we will first verify Jankowski and mkalakos’ assumptions by the use of a more 
general model, and then calculate the amount of strain which can be predicted for 
various combinations of two ditferent metals (such as W i ,  Au/Ni, CWPd, A@d, 
etc). This should yield a quantitative answer as to the amount of supermodulus effect 
that can be expected on the basis of the coherency strain model. 

211. 

2. The elastic constants 

As stated in the introduction, we fust derive general formulae for the calculation of 
the elastic constants for a single metallic layer, subject to an arbitrary @ut small) 
initial deformation. We adopt Jankowski and Bakalakos’ model [9-11], which is 
based on the pseudopotential energy approach [22,23]. According U) this model, the 
total crystal energy for a noble metal may be written as 

where E, represents the electrostatic Coulomb energy of positive point charges in 
the uniform negative-charge background (the so-called Madelung energy); E, is the 
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free-electron energy, which depends on the crystal volume; Ebe is the band-structure 
energy; and E, the i o n a r e  (Born-Mayer) replusive energy term. 

From their calculations, Jankcnvski and Bakalakos conclude that E, is the pre- 
dominant term for calculations of the elastic constants. Following Soma [24], the 
energy term, E,, can be expressed as: 

P P Delsanto e! al 

E, = 0 . 5 a x e x p  (-PR(")) 
n 

where a is the repulsive energy parameter and 0 is the repulsive range parameter. 
The sum b extended to aU the nearest neighbours which are located at distances 
R("), as will be explained later. The values of a and 0 for Cu, Au and Ag are given 
in [9]. 

Io the present paper we also write E, as in (22) and neglect all other terms in 
(21). (In a subsequent paper, we will, however, generalize the present treatment to 
include the other three energy terms and also consider other functional forms for 
E,.) We then Write the second-order elastic costants (stithess constants) as 

(23) 

where 

= E / n  (24) 

is the potential energy of deformation per unit volume (or elastic potential), R is the 
cell volume and qi j  is the Lagrangian strain tensor. 

Starting with equations (21-2.4). Jankowski and Bakalakos [9-111 proceeded 
to determine the elastic constants by considering a number of nd hoc crystalline 
deformations. While this approach is convenient and quite straightforward in some 
cases (e.g. the deformation in the direction [lo01 which they consider), it becomes 
very tedious and complicated for a general treatment. Also, it is important to make 
sure that the deformations that are chosen correspond either to dilatations or to 
pure strains without a rotation (see [U] for a pictorial representation of a general 
deformation split into a pure snain plus a rotation). It appears that this was not the 
case in the analysis by Jankowski and Bakalakos (e.g. equations (13) and (14) of 191 
and tahle 1 of Ill]), thus leading to formulae for some of the elastic constants which 
are not symmetric, as they should be. For these reasons we prefer to rely on a more 
systematic approach to compute the elastic constants, based on the formula 

-=+a+,- aqij a 2 a x j  ' a z i  a )  . 

The above formula is derived in appendix A (where we also discuss the separation 
of pure strains from pure rotations for the case of a general deformation). In (25) Xi 
are the Lagrangian coordinates corresponding to an initial state which may he subject 
to an (initial) linite deformation, I; are the final (Eulerian) coordinates, differing 
from X i  by an infinitesimal deformation. It is important to note that, in applying 
(25), the Lagrangian coordinates Xi must be considered as constants (since they 
refer to a predefined initial state). 



Cbherency efects m metallic bilayem 3919 

T8bk L Values d h e  elastic mnshnts and biaxial modulus in the (X, Y, 2) reference 
system as a function d m i n .  Units a~ 1 0 ' ~  dyn an-'. 

Epsilon CU CZS Car Csa cn c,, c,, yb 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
7.3 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
33 
39 
40 
41 

-ai 
-0.038 
-0.036 
-0.034 
-0.032 
-0.030 
-0.028 
-am 
-0.07.4 
-0.072 
-a020 
-0.018 
-0.016 
-0.014 
-0.012 
-0.010 
-0.W 
-0.006 
-0.W 
-Om 

OMY) 
aw 

0.006 
0.W 
0.010 
0.012 
0.014 
0.016 
0.018 

aw 

0.020 
0.022 
0.024 
0.0% 
0.028 
0.030 
0.032 
0.034 
0.036 
aos 
a i  

is08 
2496 
2485 
2473 
2462 
2451 
2440 
2429 
2419 
2408 
2398 
U89 
2379 
2370 
2360 
2352 
2343 
2.334 
2326 
2318 
2310 
2302 
2295 
2288 
2281 
2274 
2267 
2261 
2255 
2249 
2243 
2238 
2232 
2227 
2223 
2.218 
2214 
2210 
2206 
2202 
2199 

3.935 
3.815 
3.699 
3587 
3.478 
3373 
32.71 

3.078 
2986 
2897 
2811 
272a 
2647 
2569 
2494 
2421 
2351 
2283 
2217 
2153 
2092 
m3 
1.975 
1.919 
1.866 
1.815 
1.765 
1.717 
1.670 
1.625 
1.582 
1.540 
1.500 
1.461 
1.423 
12.37 
1.352 
1.319 
1287 
1.256 

3.173 

1.256 
1.217 
1.180 
1.144 
1.110 
1.076 
1.043 
1.012 
a9816 

a9237 
0.8961 
0.8695 
0.8437 
0.8188 

a9522 

a7946 
ani3 

anm 
a 7 w  

0.7059 
a6855 
0.6658 
0.6468 
0.6284 
a6106 
0.5935 
a5769 
05609 
0.5454 
0.5305 
0.5160 
a5021 

a4757 
0.4633 

0.43% 
0.4284 
a4176 
(14072 
a3972 

a@m 

a4512 

0.4667 
a4701 
0.4733 
a4766 
a4798 
a4829 
a4861 
a4892 
a4923 
a4954 
ami 
asools 
am5 
as076 
a5106 
0.5137 
a5167 
0.5198 
a5us 
a5259 
a5290 
a s 2 2  
a5353 
a s 8 5  
a5417 
0.5450 
a5482 
a5516 

0.5583 
a5618 
a5653 
0.5689 
0.5725 
(15762 
a58w 

a5549 

a5833 
0.5877 
03917 
0.5958 
O d w o  

0.6012 
a6019 
0.6026 
0.6035 
06043 
0.6052 
0.6062 
06072 
0.6083 
a6094 

0.6119 
0.6132 
0.6145 
0.6160 
0.6175 
0.6190 
0.6206 
0.6223 
0.6241 
0.6259 
0.6278 
0.6298 
0.6318 

a6106 

am4o 
am2 
0.6385 
0.6408 
0.6433 
0.6458 
0.6485 
0.6512 
0.6540 
0.6569 
0 . W  
0.6631 
0.6663 
0.&97 

0.6767 
a6804 

a6731 

1.423 
1380 
1333 
1.298 
1.259 
1.221 
1.184 
1.149 
1.115 
1.082 
1.050 
1.019 
a9887 
0.9598 
0.9318 
0.9047 
0.8786 
0.8533 
0.8288 
0.8052 

0.7603 
0.7390 

0.6986 
0.6794 
0.6609 
0.6430 
0.6257 
0.6091 
05930 

0.5626 
0.5481 
0.5343 
0.5209 
05080 
0.4956 
0.4836 
0.4721 
0.4611 

0.7824 

a7185 

o m s  

0.200200 
0.201030 
0.201870 
0.202740 
0.203630 
0.204540 
0.205470 

0.207410 
0.208410 
0.Ur)blo 
0.210500 
0.211580 
0.212690 
0.213830 
0.215wo 
0.216190 
0.217420 
0.218680 

0.221290 
0.222650 
0.224040 
0.275470 
0.226940 
0.228440 
0.229990 
0.231570 
0.233200 
0.234870 
0.236590 

0 . ~ 1 5 0  
(1242010 
0.243920 
0.245880 
0.247900 
0.249970 

0.254290 
0.256540 

az064m 

0.~199m 

a m %  

a252100 

5.070 
4.905 
4.745 
4.590 
4.440 
A295 
4.155 
4.019 
3.887 
3.759 
3.636 
3516 
3.403 
3.288 
3.180 
1074 
2973 
2874 
z n g  
2686 
2597 
2510 
2426 
2345 
2266 
2190 
2116 
2044 
1.975 
1.908 
1.843 
1.780 
1.719 
1.660 
1.603 
1.548 
1.494 
1.442 
1.392 
1.343 
1.296 

Using (25), it is straightloward to prove that, for a differentiable function f ( ~ ) ,  
the followiog relation holds: 
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and 
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From (2) and @), it then follows that 

C i j h t  = A i j h t  - B i j k t  

where 

Aijkc  = f(")Yij.",), 
n 

f'") = f( R(")) = 4g(n)[( 1 -I- PR(")) / (  R("))2] (213) 

(214) 9( - - g ( R ( n ) )  = (K/R(n))exp ( - p ~ ( n ) )  

where K is defined as 

K = ap/sn (215) 

and Y("), Z("), and R(") refer to the corresponding quantities defined in (ll), (9), 
and (12) respectively, as calculated for the nth nearest neighbour. 

In order to simplify the calculation of the elastic constants, it is useful to observe 
that the number of terms to be aaluated explicitly may be greatly reduced due to 
some special symmetries, in addition to the usual symmeaies of Ci jk t .  These special 
symmetries, which are due to the special structure of Yijkl and Z i j h t ,  are listed in 
appendix B. 

It is straightfonvard to apply (2.13) to the case of deformations in the [lo01 
direction, which transform an FCC crystal into one with only tetragonal symmetry. 
One then obtains formulae for the elastic constants and moduli which agree with 
those reported in [ll], except for some corrections due to the incorrect inclusion of 
rotational components in some of the deformations considered in [9-11). 

3. Biaxial deformation in the direction I1111 

Let us assume that an FCC crystal cell is deformed in the [lll] direction, which is 
represented, in figure 1, by an axis X parallel to OD (diagonal of the cube) and 
normal to ABC. The deformation can be analysed easily by comidering the three sets 
of axes, all centred in 0 

(i) a set of axes (z, y, z )  parallel to three sides of the cube (see figure 1) 
(ii) an auxiliary set of axes (I', y', z ' )  obtained from (I, y, z )  with a 4 5 O  rotation 

(E) a thud set of axes (X, Y, Z ) ,  obtained from (z', y', z') with a rotation 
around z 3 rt' 

around y' Y of an angle 

e = arcsin(lJd5). (3.1) 
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F 

+-.I- 
Elgmre t Representation d the sets d axes 
(z,y,z) and ( X , Y , Z ) .  Ihe laner is used U) 
study the q t a l  in a biaxially deformed state. Ihe 
angle 8 ii defined in (3.1). 

Figure Z The FCC unit q t a l  cell. 

It can be easily shown that the transformation equations &om (x,y,z) to 
(X, Y, 2) are: 

x = (I+ Y + z ) /&  Y = (-x+ y)/& z = (-2- y +  2 z y 4  (3.2) 

Now all the allowed positions for atoms in an undeformed FCC aystal (figure 2) 
may be specified by three coordinates x, y, z which are integer or half-integer multi- 
ples of the lattice constant a, the only restriction being that I + y + z must be an 
integer multiple of a. Applying (3.2) we tind that the corresponding coordinates in 
the (X, Y, 2) reference system are given by: 

x = l a / &  Y = m a / &  z = n a / a  (3.3) 

where 1, m, n, are integers, the only restriction being that m and n must have the 
same parity. Figure 3 shows the lattice arrangement, as obtained from (3.3), for the 
plane ABC (X = ./a) and the two neighbouring planes X = 0 and X = 2 a / 6 .  
Figure 3 shows, in addition to others, all the lattice positions shown in figure 2, except 
for the lattice point D, which Lies in the plane X = 3 a / f i .  

Using (3.3) or, equivalently, figure 3, it is now easy To represent the eight 'nearest 
neighbours' to any atom (say the atom at 0). In figure 4 we show them schematically 
both in the (2, y, z )  and (X, Y, Z) systems of axes. In the undeformed crystal they 
are located at a distance a / f i  from 0. 

In the ( X , U ,  2) system a biaxial deformation in the [111] direction can be 
described by the mansfonnation equations 

X ,  = X(l+€ ' )  x, = Y(l  t €) x, = Z ( 1 t  E )  (3.4) 

i.e. consistent with section 2 we call X i  the coordinates of the lattice positions in 
the (initial) deformed state, after the biaxial deformation, but before the infinitesimal 
deformation which we have used to derive (210). 
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' I *  

* I *  

F+d . 0: :P 

\ I 1  \ I  

1" 

I.) (a) 

Figare 4 Rsprtsenlation d lhe hveive nearat neighbours (a) m lhe (z, y, I) q l e m  
and @) in Ihe ( X , Y ,  Z) system. 

Equation (3.4), above, can be used to obtain the coordinates, after the biaxial 
deformation, of the twelve nearest neighbours shown in figure 4. Alternatively, fig- 
ure 4(b) may be used directly to read their coordinates, with the proviso that, in 
the equations of the planes, a becomes a(1 + E ' )  and, in the planes themselves, a 
becomes a( 1 + e). 

It then becomes straightforward, albeit rather lengthy, to calculate all the sums 
over the nearest neighbours in (2.11) and (212) and obtain explicit expressions for 
the elastic constants. Although one might assume a priori that in the deformed 
state the aystal loses all its symmetries (ie. it becomes miclinic), it can be proved, 



In (3.9), the functions f and g are explicitly defined by (2.13) and (2.14), respec- 
tively. 

A The biaxial modulus 

We define the biaxial modulus as the stress-strain ratio [26] 

Yb = U/€ ( 4 4  

where, assuming symmetry in the X2-X3 plane, we have (in the compact notation) 

(4.2) u2 = 0, = U u1 = U, = U, = us = 0 

and 

(4.3) c2 = r, = E 

Yb can be measured with a bulge test in a thin film: it represents the stress 
over strain ratio for a stretching of the film without shear (u4 = 0). The equations 
u1 = u5 = us = 0 give the natural boundary conditions, since there cannot be any 
stress component outside the X2-X3 plane. 

Due to the assumed symmetry in the X2-X3 plane 

€2 = €3 = (SZ2 + SZ3) U (4.4) 
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5 

In 

0 2  

0 
a01 .O.M 0 0.02 0.M 4.04 -0.W. 0 0.02 024  

EPSILON EPSILON 

E l p i t  5. Plots of the elastic mnslants and tiaxial modulus in the (X, Y, Z) qstem as 
a function d the stlain: (a) CII,CZZ,CII,CSS; (6) Cn,Cz3,Czs, and Vb. Units 
are 10’2 dyn m - 2 .  

Yb = I / (% + S23) 
and 

(4.5) 

In (4.4) and (4.5) above, Sij is the elastic compliance tensor, which is the inverse 
of the stiffness tensor; in compact notation it may be written as 

S..C.  s> > k  - - 6. sk (4.6) 
For special symmetries (e.g. trigonal, as in our case), it k possible to find simple 

relationships between the components of the stiffness and compliance tensors [XI. 
Applying these relationships to (4.4) and (4.5) we obtain 

€‘=E1 = - 2 ( c l 2 / c I 1 ) €  (4.7) 

Y b  = c 2 2  + c2, - 2 (C12Y /Cl1 (4.8) 
In a similar fashion, it is also possible to calculate other elastic moduli. 

5. Numerical results 

In sections 3 and 4 we have derived the explicit expressions for the elastic constants 
and biaxial modulus of an FCC crystal that is subjected to a biaxial deformation in the 
[lll] direction. We now proceed to a numerical evaluation of the pertinent elastic 
constants. There are two parameters in our formulae that need to be specified: a 
and p (22). The choice of a is irrelevant, from our p i n t  of view, since it affect$ 
only the absolute values of the elastic constants and the moduli as a multiplicative 
constant, whereas we are interested in their relative change. ’b give it a value, we 
have used it as a ‘free’ parameter to fit the experimental value of C,, in the case of 
zero deformation in the ( z ,  y, z )  reference system (see figure 1). We have obtained 
p values from [9] in units of a-l (where a is the lattice constant): p = 26.46 for 
Cu, 25.9 for Au and 25.46 for A& We have chosen p = 26 as the representative 
value for aU three metals. 

By applying (3.5) and (4.8), we have evaluated all the independent elastic constants 
and the corresponding biaxial modulus for strains between -4% and +4%, the 
numerical results are given in table 1 and are plotted in figure 5. It is important to 
note that the reported values refer to the system of axes (X, Y, 2) that is shown in 
figure 1 and defined in section 3 of this paper. 
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Figure 5 shows that a relatively small deformation may lead to a large change in 
Yb due mainly to the conhibution of C2z. The other two terms C,, and -2C&/C,, 
are, however, also important The latter term is almost constant but, nevertheless, 
helps to increase the effect in relative terms by decreasing the absolute value of 
the biaxial modulus. The effect is more pronounced for negative deformations; for 
example, a variation of +65% in Yb results for = -0.03, compared to a change 
of about -40% for 6 = +0.03. 

6. Conclusions 

As mentioned in the introduction, the purpose of the present study was to investigate 
(theoretica1Iy) the so-called 'supermodulus effect' in very thin films made of metal 
layers such as Cu, Au, and Ag. In our analysis we have adopted the coherency 
strain model, as proposed by Jankowski and 'Bakalakw. However, since in multilayer 
systems the interfaces are usually parallel to the (1111 direction, in order to have a 
meaningful comparison with experimental results we have derived the general formu- 
lae both for elastic constants and the biaxial modulus in any deformed state. We have 
then applied our formulae to calculate the relative variations in the elastic constants 
and the biaxial modulus when the crystal is subject to 3 small biaxial deformation. 

Our numerical results show that even relatively small strains can greatly affect 
the biaxial modulus, thus providing a plausible qualitative explanation for the super- 
modulus effect, albeit not to the extent reported in the first experimental papers on 
the subject In order to obtain a quantitative answer as to the magnitude of the 
supermodulus effect for different metallic multilayer systems, we need to model the 
atom matching between different metal layers, so that we can evaluate the resulting 
coherency strains. Afterwards, a plot similar U) figure 5 can be used to predict quan- 
titatively the actual variation of the biaxial modulus on the basis of the coherency 
strain model. This will be done in a subsequent paper. 

Our calculations are based on a pseudopotential energy approach similar to the 
one employed by Jankowski and Bakalakos with some additional assumptions, as 
explained in section 2 The assumptions were incorporated in our analysis in order 
to simplify the calculations by retaining only the predominant terms in the evaluation 
of the elastic constants. In order for our model to be fully reliable, however, we 
need to compare it with other pseudopotential energy models which have been used 
to predict other atomic properties [27, 281. This may require some modification in 
the ion-core repulsive energy term (2.2) and the retention of other relevant energy 
terms. As mentioned earlier, this will also be done in a subsequent paper by following 
closely the approach described in sections 2 and 3 of this work 
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Appendix A. Pnmf of equation (2.5) 

Let us consider an arbitrary infinitesimal deformation 

P P Dekanto et al 

U,  = xi - X i  = e. V . X .  I ( i  = 1,. . . ,3) (All 

where Xi are the initial coordinates (material or Lagrangian description), xi are the 
final coordinates (Eulenan description) and 

e. .  I t  = au,/axi = aui/axj. (W 
By negleuing second-order terms it is easy to prove that the Lagrangian strain tensor 

ax, ax, 

coincides with the Eulerian strain tensor 

so that 

alaqij = a / a c i j .  
The deformation described by (Al) is, in general, a linear combination of dilata- 

tions (terms with j = i), pure strains (given by c i i ) ,  and rotations which correspond 
to the antisymmetric tensor 

(-47) e . .  = c . .  e . .  = E . ,  - w . .  
' f  t, + wij J' * I  I J  

and therefore, if i # j, then 

alaeij = alarij + a/awij  a/aeji = alaeii - a/awij (4 
Equation (AS) allows us m separate, in the derivatives, the contributions of the pure 
strains from those of pure rotations. If the last term is ignored, then (AS) is also 
valid for dilatations. 

It then follows that 

x.-+xi- . = A (  2 ' a x ;  a axj " )  
Equation (As) is also valid when i = j, in which case 

alacij = xia /axi  
with no implied summation over the index i. 
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Appendix B. Special symmetries in the tensors Aijbl and BijU 

As is well known, the number of independent Cijkr is reduced from 81 to 21 (in the 
most general case), by applying the symmetries 

c,,, = Ciib/ = Cijrk = Ckri j .  (B1) 

Thir, can be automatically achieved by using the compact notation in which a single 
index, N M h g  from 1 to 6, replaces each pair of indim 

i , j  - n = i 6 i j  + (1 - 8ij) (g - i - j) (TI = 1,. . . ,6). (BZ)  

In addition, there are, however, some special symmetries of Aijkr  and Bijkl which 
are due to the structure of the definitions of qjkr and Zi jkl .  They are listed as 
follows 

(i) Since the order of the indices in K j k r  is irrelevant, it is easy to see that (using 
compact notation) 

E,, = B35 = 2B,, 

BZ4 = B3, = 2 4 ,  

(G) If there is cell symmetry with respect to a certain coordinate X ,  and the index 
i occurs an odd number of times, then the corresponding elastic constant vanishes. 
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